A Guide to Slab Rollers

How to buy a slab roller or build your own plus three slab pots you can make from clay

This special report is brought to you with the support of North Star Equipment Inc.
A Guide to Slab Rollers
How to buy a slab roller or build your own
plus three slab pots you can make from clay

If you’ve been making slabs with a rolling pin, you know how much work it is to get even slabs every time. But, with a slab roller, you’ll find it so easy to create slabs that you’ll come up with more and more ideas on how to use them. If you think you’re ready for a slab roller (and who isn’t), check out Daryl Baird’s information on how to select one or even make your own. If you’re cramped for space or only need a slab roller for small projects, take a look at the portable models—there’s something here for everyone!

Choosing a Slab Roller
By Daryl E. Baird

When you get to the point where a rolling pin is just too much of a hassle for all the slabs you want to make, it’s time to consider getting a slab roller. Daryl E. Baird, author of From a Slab of Clay, explores the ins and outs of making the right choice.

Four Portable Slab Rollers
By Bill Jones

If you have limited space or only occasionally need a slab roller, you may want to consider one of the small rollers available from the major slab roller manufacturers. These small slab rollers take up very little space and some even stow away or are portable.

How to Make Your Own Tabletop Slab Roller
By Daryl E. Baird

Daryl Baird wanted to build his own slab roller so he searched online and discovered George and Nancy Wettlaufer’s 1975 pottery manual that had plans in it. Using their plans as a starting point, Daryl upgraded the design to 21st century standards and materials. If you would like to build your own slab roller, here are the plans.

3 Slab Roller Projects
by Daryl E. Baird

Making pottery from slabs provides endless opportunities for creativity. Once you have a slab roller, you’ll have hours of fun making tiles, bowls, plates and platters. Daryl Baird shares three projects that will build your skills beginning with making simple tiles to creating a bowl using templates.
Choosing a Slab Roller

by Daryl E. Baird

Currently, there are a handful of manufacturers and dozens of distributors who offer thirty models of a machine designed to help you do one thing: turn a mound of clay into a flat slab.

Slab rollers are sold alone or in a complete package with legs and a table. With some, the mechanism for moving clay under and past the drum is hand operated using anything from a simple hand crank up to a large “wagon wheel,” while others are motor driven. Some have one roller, others have two. They come in a variety of widths, from 16 inches up to 40 inches, and the tables are anywhere from a 18 inches all the way up to 7 feet.

Some are designed for portability while the rest are floor models designed for use in a larger studio. Some are light-duty while others are “industrial-grade” and built to work under heavy demand, day in and day out. Prices range from under $200 to more than $2000.

What to Consider

WHO is going to use the slab roller?

Will the slab roller be used by one person, or a group of people? Answering this may help you determine whether or not you’ll need a model designed to sustain heavy use. Some light-duty models carry limited warranty coverage, explicitly stating that they are not intended for commercial or institutional use. If several people are going to use the slab roller, get input from them as to what they want to do with it and how often they plan to use it. Also, consider if anyone has physical limitations that might interfere with his or her ability to operate the slab roller. If so, test the equipment before you buy it.

WHAT do you plan to do with the slab roller?

You’re going to roll out slabs of clay, of course, but what will be the width and length of most of your slabs? Will most of your slabs be around one square foot and ¼-inch thick or will you be doing larger projects that require slabs two to three feet wide, several feet long and a ½-inch thick? Bigger isn’t always better. If it looks like you’re going to do mostly small-scale projects, requiring slabs no wider than sixteen inches, then a portable model or a light-duty floor model may fit the bill.

WHERE will the slab roller be used?

Space is precious in many studios so careful planning is required when adding a floor-model slab roller. It’s sort of like deciding to put a billiard table in a guest room. The space has to be big enough to use the table, not just fit the table. Ideally, you should have an area in the studio equivalent to the dimensions of the slab roller’s table plus an additional two feet of walking space all around. However,
most of the floor models on the market can be located against a wall and still be conveniently operated. Some models come with locking casters and others can be outfitted with them so the slab roller can be used in an open area, then moved aside when not in use.

Bear in mind that slab rollers equipped with tables also make excellent working surfaces for other studio projects. You may find that the table or bench you’re using now can be replaced with a slab roller without losing work space.

If you need to travel with your slab roller, there are six portable models currently on the market.

WHEN will the slab roller be used?

This also relates to how often you’ll use the slab roller. Will you use it on a daily basis or just occasionally? Your answer here will help you determine if you should invest in one of the heavy-duty models. These are often equipped with ultra-strong gearing and 4-inch rollers. Look for lifetime warranties when purchasing these types of machines.

HOW MUCH money are you planning to spend?

While this may be your dealer’s opening question, it may not necessarily be the first question to ask yourself. By evaluating your needs before you budget, you can do a better job of getting the appropriate slab roller.

For more information

Amaco/Brent has five slab rollers in its product line, Northstar Equipment seven, and Bailey Pottery Equipment has thirteen. Axner, Clay-King and Shimpo offer similar models. Check out websites for more detailed information and check with your local supplier to see what they carry—it’s worth checking them out in person.

Axner

www.axner.com

Bailey Pottery Equipment

www.baileypottery.com

Amaco/Brent

www.amaco.com

Clay-King

www.clay-king.com

North Star Equipment

www.northstarequipment.com

Shimpo

www.shimpoceramics.com
Four Portable Slab Rollers

by Bill Jones

If you’re using a rolling pin and canvas to make slabs and find yourself limited by the stress, strain, and even the length of your arms, then maybe you should consider a tool every bit as valuable as the wheel. For consistency and ease, nothing beats making slabs with a slab roller.

The good news is, there is a slab roller out there that will suit the needs of anyone working in clay. For the potter needing the occasional slab for handbuilding or augmenting thrown work, or the professional tilemaker in a production facility, there are machines that range in size from tabletop models to hulking motorized behemoths capable of flattening the studio dog. If you’re an occasional user, you may want to consider a portable slab roller as a viable alternative to a rolling pin and a more economical option than a stationary model.

Portable slab rollers have been around for many years, and both professionals and amateurs have found they get the job done, but, just as importantly, they conveniently stow away when not in use. This is an important consid-

PORTABLE SLAB ROLLERS COMPARISON CHART

<table>
<thead>
<tr>
<th>Manufacturer</th>
<th>Model Description</th>
<th>Slab Size</th>
<th>Drive</th>
<th>Adjustment</th>
<th>Minimum</th>
<th>Maximum</th>
<th>List Price</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMACO/Brent</td>
<td>Brent Mini SRC</td>
<td>14¾×14½</td>
<td>Cable</td>
<td>Masonite shims</td>
<td>¾"</td>
<td>¾"</td>
<td>$400</td>
<td>Short Legs hold the table high enough for crank clearance. Includes ¾-inch shim with canvas and two ³/₁₆-inch plain shims.</td>
</tr>
<tr>
<td>AMACO/Brent</td>
<td>Brent SRC</td>
<td>21×40</td>
<td>Cable</td>
<td>Masonite shims</td>
<td>¾"</td>
<td>¾"</td>
<td>$680</td>
<td>Mounts to the table (which makes it less portable) or you can buy optional screw-in legs ($99). Includes ¾-inch shim with canvas, four ¾-inch plain shims and one ³/₁₆-inch plain shim.</td>
</tr>
<tr>
<td>Bailey Equipment</td>
<td>16" Mini Might Table Roller</td>
<td>16×18</td>
<td>Dual Gear</td>
<td>Masonite shims</td>
<td>¾"</td>
<td>¾"</td>
<td>$299</td>
<td>Rubber feet standard. Masonite shims and a slab sheet included. Longer slabs possible with longer Masonite shims.</td>
</tr>
<tr>
<td>Bailey Equipment</td>
<td>22" Mini Might Table Roller</td>
<td>22×24</td>
<td>Dual Gear</td>
<td>Masonite shims</td>
<td>¾"</td>
<td>¾"</td>
<td>$392</td>
<td>Rubber feet standard. Masonite shims and a slab sheet included. Longer slabs possible with longer Masonite shims. Optional legs are available.</td>
</tr>
</tbody>
</table>
eration for the potter with limited space or the teacher cramped by the demands of a multi-use art room. The fact that these rollers are portable is also a plus for workshop presenters demonstrating in a venue where no slab roller is available.

Among the manufacturers of slab rollers, two companies (American Art Clay Co. (AMACO/Brent) and Bailey Pottery Equipment Inc.) produce portable models. (Note: We’ll cover stationary slab rollers in future issues.) If you’re interested in portability, the four slab rollers discussed here may be the best choice. These slab rollers are distributed nationally and many distributors have models on display so you can get a firsthand look at them.

AMACO®/Brent®

Originally developed by Robert Brent in the late 1960s, Brent slab rollers have been made by AMACO for over twenty years. They are constructed of heavy gauge steel, include shims and built to provide years of service. To make slabs, clay is placed on a canvas-covered Masonite bed in front of the roller. A heavy-duty pipe on top is connected to a pipe underneath the table by cables. As the crank is turned, both rigid pipes move the length of the bed, flattening the clay. The cable drive keeps firm, even pressure on the rollers throughout the length of the bed. For thicker slabs, Masonite shims are removed to increase the clearance between the shim and the roller, and shims are added to decrease the clearance. Shims come in \(\frac{\text{1}}{8} \)- and \(\frac{1}{4} \)-inch thicknesses.

Note: While the Mini SRC is strictly a tabletop model, the SRC can be configured as a floor model with the purchase of an optional leg set. The Brent SRC and SRC Mini are not for production use or schools. Visit www.amaco.com for more information.

Bailey Pottery Equipment

Bailey Equipment made their first slab roller in 1974 and now offers a comprehensive line of machines. Their portable Mini-Might slab rollers utilize a dual roller drive mechanism that compresses the clay from both sides. With this system, clay is placed on a sheet of canvas on a Masonite shim and another piece of canvas is placed on top. This “slab sandwich” is fed through two heavy duty textured rollers as the operator turns a crank, and a fixed gear drive turns both rollers at a one-to-one ratio. Side guides keep the Masonite on center as it passes through the rollers. The distance between the rollers is fixed and the thickness of the slab is adjusted by adding or removing the \(\frac{1}{8} \)- or \(\frac{1}{4} \)-inch thick shims. Bailey offers two portable slab rollers, as well as an optional set of legs for the 22-inch model. Additional shims and canvas also are available, and you can make longer shims to create longer slabs. For more information, visit www.baileypottery.com.
How to Make
Your Own Tabletop Slab Roller

by Daryl E. Baird

I wanted to build my own slab roller so I searched online for plans, and found a site that referred to George and Nancy Wettlaufer’s book, Getting Into Pots: A Basic Pottery Manual, published in 1975. George designed the type of slab roller I wanted to build; it's simple and uses common tools and materials. I studied his plans and made modifications that would make it easier for me build with readily available parts and the tools I had on hand. The slab roller shown here costs under $150 and took about six hours (not counting the three trips to the home center).

Step 1: Construct the Base
1. Take one of the 2×4 foot pieces of ¾-inch plywood and mark the locations of the casters (figure 1).
2. Attach the 10 casters with #8×⅜-inch panhead screws.
 Note: All the caster axles must be perpendicular to the sides of the base to ensure the top board glides smoothly over them.
 Optional: If the base is warped, you can add 2×2-inch wood rails to the underside to stabilize the plywood.

Step 2: Construct the Cradle
1. The roller is mounted to a cradle. To make the cradle, cut a 34-inch long section and two 5½-inch pieces from the 1×6. Cut the 5½-inch pieces down to 3 inch wide to create two 3×5½- and two 1×5½-inch pieces.
2. Attach the 3×5½-inch pieces to the ends of the 1×6 with 3 #8×2-inch flathead wood screws on each end (figure 2).
3. Glue and clamp the 1-inch blocks into the inside corners to strengthen the joints (see figure 9).
4. Attach the cradle to the center of the base with eight evenly spaced #8×1⅛-inch flathead wood screws. Hold the cradle in place with clamps as you drill pilot holes and attach with screws.
Step 3: Make the Glide Board
1. Cut two 27 inch lengths of ¾-inch aluminum angle. Use a flat file or grinder to remove any burrs.
2. Draw a line at the mid-point of each angle piece and drill $\frac{11}{64}$-inch holes in each piece for the screws and two $\frac{3}{16}$-inch holes for the eyebolts (figure 3).
3. Attach the angle aluminum to each end of the 2×4-foot plywood glide board using #8×5/8-inch panhead screws.
4. Loosely attach the eye bolts to each end of the aluminum angles with the eye of each bolt pointing inward.

Drilling plan for aluminum angle.

Step 4: Build the Roller
1. Cut one 27-inch long piece of 3-inch diameter ABS pipe, and two 3½-inch long pieces of 2-inch diameter ABS pipe (figure 4). Sand rough edges. Note: The cuts must be 90° so using a miter box or miter saw is recommended.
2. Prepare the reducers by removing any raised mold ridges with a Dremel-type tool or small grinder to create a smooth surface. Use a rubber mallet to tap the reducers onto each end of the 3-inch pipe.
3. Tap the 2-inch diameter ABS pieces into the reducers.
4. Tap only one 2-inch end cap on one end. Make sure all pieces are fully seated. Note: PVC pipe adhesive is not used in this assembly. DO NOT install the other end cap at this point.

ABS plastic parts for roller assembly.

Step 5: Make the Crank
1. Mark the center line of the other 2-inch ABS cap and drill a $\frac{3}{4}$-inch hole $\frac{3}{4}$ inches on either side of this line.
2. Use a hacksaw to cut a 24-inch long piece of flat iron bar. Measure in an inch from one end of the handle and drill a $\frac{3}{4}$-inch-diameter hole using a metal cutting drill bit. For the mounting holes, drill two $\frac{3}{4}$-inch holes one on the other end using the ABS end cap from the previous step as a guide for drilling the holes (figure 5).
3. Attach the end cap to the bar using two $\frac{3}{8}$-20×$\frac{3}{4}$-inch machine screws (figure 6). Use flat washers on the outside of the cap and lock washers on the inside. Note: It’s important that these attachments stay tight for the life of the roller. As an added precaution, apply Loctite threadlock adhesive before tightening.
4. Make the wooden handle from a 5-inch long piece of closet pole. Drill a pilot hole through the center on one end and attach the handle to the crank with a $\frac{3}{8}$×2½-inch roundhead wood screw and a flat washer on each side of the crank (figure 7). Tighten the screw all the way down then loosen it just enough to allow the grip to turn smoothly.

Step 6: Assemble the Roller
1. Fill the roller with playground sand, plaster, or concrete (figure 8). When using sand, tap the pipe to compact the sand.
2. When the roller is completely filled, tap the hand crank onto the open end.

Crank and end cap detail.
Step 7: Attach the Roller
1. Lay the roller onto the cradle and place a U-shaped 2-inch conduit clamp over each of roller end. While holding an anchor in place, drill two pilot holes in the cradle. Repeat for the other end of the cradle.
2. To help the roller turn freely under the anchors, place two flat washers under each of the mounting holes to act as shims. Secure the conduit anchors using #10×2½-inch roundhead wood screws with a flat washer under the head of each (figure 9). The roller should turn smoothly under the anchors without extra effort. Do not overtighten the screws.

Tip
Before attaching the cables, place the glide board on top of the casters then turn the hand crank and check the gap between the glide board and the bottom of the roller in several locations. The gap should be the same at each stopping point across the full length of the roller. If it isn’t, the thickness of the slab will vary. If necessary, remove the roller assembly and use the mallet to square up the reducer and other roller components. Reinstall the roller assembly and check the gap. When the gap is right, continue with installing the cables.

Step 8: Attach the Cables
1. Fold the 9-foot cables in half to find the midpoint, being careful not to crimp them, and mark this point.
2. Lay a cable across the open jaws of a bench vise and, using a hammer, drive a small nail through the strands of the cable (figure 10). Take care to get an even number of strands on either side of the nail. Before removing the small nail, tap a larger nail into the opening and remove the small nail. Work the large nail back and forth to widen the opening in the cable.
3. Before you remove the large nail, insert a #8×½-inch screw into the opening then remove the nail (figure 11). Leave the screw in place. Repeat this for the other cable.
4. Turn the roller so the handle is pointing straight down then drill a ⅛-inch pilot hole in the center of the large end of the reducer. Attach a cable with a #8×½-inch screw into place. Repeat this for the other cable.
5. If it isn’t already in place on top of the casters, slide the glide board under the roller to the right, leaving about 2 inches of the board exposed on the left of the roller. Stand at the crank side of the roller and slide the left end of the cable under the roller to the right. Thread this end of the cable through the eye bolt then loop it over onto itself and hold it in place, loosely, with a cable clamp (figure 12). Move around to the other side of the roller and attach the other cable to the same end of the glide board.

Tip: Before attaching the other ends of the cables, have two 5-inch lengths of duct tape at the ready. When each cable is wound around the roller, use the duct tape to hold the windings in place while attaching the cable to the eye bolt (figure 13).
6. Move back to the crank side of the roller and wrap the right side of the cable around the roller three times and have it come out under the roller to the left. Thread this end of the cable through the eye bolt, loop it onto itself and secure, loosely, with a cable clamp. Repeat this for the other cable. All four ends of the cables should now be attached to the eye bolts in the glide board.
Step 9: Adjust the Cables

1. At this point the cables are very loose and likely to slide off the roller if the hand crank is turned. Carefully turn the crank so the middle of the glide board is under the roller. Take care to keep the cable wraps from unwinding. Reapply the duct tape if needed.

2. Turn the nut on each eye bolt so only a few threads are showing past the end of the nut. This allows for maximum adjustment travel.

3. Loosen a cable clamp so the slack can be pulled out of one side of a cable. Keep the edges of the glide board squared up with the edges of the base board during all of the adjustments. As the slack is drawn out, tighten the clamp using a wrench. Repeat this for the other three cable ends.

4. Turn the hand crank and observe the movement of the glide board. Use a wrench to turn the nuts on the eye-bolts and tighten the cables. If the glide board drifts to one side, try tightening the cable on the other side. By trial, the tension in the cables will reach the point where the cable windings on the roller stay flat and the glide board remains square as it moves under the roller.

5. Leave two inches of cable past the end of the clamp and cut off the excess. Cable cutters are ideal for this but a Dremel-type tool equipped with a cutting disk serves the purpose as well. Tape the end of the cable to prevent snagging.
Step 10: Using the Slab Roller

1. Make two shim boards from a sheet of 3/16-inch tempered hardboard (Masonite). As designed, this slab roller has a ¾-inch gap between the bottom of the roller and the top of the glide board. This is a light-duty slab roller so a thin slab of clay is developed by rolling the clay several times and adding shim boards with each pass to narrow the gap. Rolling a large, stiff mass of clay with both shim boards in place at once is likely to damage the roller.

2. For the first pass, place the clay directly on the glide board. Since clay will stick to the ABS roller, cover the clay with a piece of canvas or bed sheet. When satisfied that the slab roller is operating satisfactorily, install #8×3/8-inch screws in the narrow ends of the reducers and in the end caps. The set screws will help keep the roller components in place.

Thanks to George Wettlaufer. Your design and plans offered excellent guidance.

Materials & Hardware

Base & Cradle
1. ¾×24×48 in. exterior plywood
2. 1½ in. rubber rigid casters
3. 20 #8×3/8 in. panhead screws
4. 1 1×6×48 in. pine board
5. 8 #8×1¾ in. flathead wood screws
6. 6 #8×2 flathead wood screws

Guide board
1. ¾×24×48 in. exterior plywood
2. ¾×27 in. aluminum angle
3. 10 #8×5/8 in. panhead screws
4. 4 ⅛×1½ in. eyebolts with nuts

Roller Assembly
1. 3 in. × 27 in. ABS pipe
2. 2 in. × 3½ in. ABS pipe
3. 2 in. × 2 in. ABS reducing coupling
4. 2 in. ABS cap
5. 6 #8×3/8 in. panhead screws
6. 4 ¼×2½ in. round head wood screws
7. 8 ⅛ in. flat washers
8. 2 ⅛ in. × 9 ft. steel cables
9. 4 cable clamps
10. 2 2 in. PVC conduit clamps

Hand Crank Assembly
1. ⅛×1×24 in. steel bar
2. 1 ⅛×5 in. dowel (from closet rod)
3. 2 ¼-20×¾ in. round head bolts
4. 1 ¼×2½ in. round head wood screw
5. 4 ¼ in. flat washers
6. 2 ¼ in. lock washers
7. 2 ¼-20 nuts

Set screw detail on roller end.

The finished slab roller.
3 Slab Roller Projects

by Daryl E. Baird

Simple as it may seem, tile making is the perfect way to begin working with slabs of clay. It helps familiarize you with your clay and with the essential tools used in most slab work including: slab boards, a rolling pin or slab roller, measuring, cutting and decorating tools.

So, that’s where our demonstrations start—with three different ways a square of soft clay can be turned into a tile. Each of the subsequent demonstrations is designed to build off of the tilemaking basics and to present new techniques or different ways to apply familiar techniques. Several tools are also demonstrated—some utilitarian and a few, like the miter press and the half-rib, that were designed to accomplish very specific slab-building tasks.

Before getting started, make a few prototypes where you can master the techniques and discover the textures that will increase the likelihood your projects will come out of the kiln just the way you want.

1. How to Make a Two Tile Panel
A well-rolled slab of clay is the starting point for any slab project and being able to cut straight-edge shapes from it is one of the first techniques to master. Here is a demonstration on how to make a long slab and cut it to create a 3-tile panel.

TOOLS & MATERIALS

• needle tool
• metal rib
• pizza cutter
• carpenter’s square
• slab board

1. Roll out a slab then inscribe a design into it using a stick with a rounded tip.

2. Use a needle tool or fettling knife along a carpenter’s square to cut from the center-most area of the slab and from the outside edge to the center so the corners stay square.

3. A sturdy picture frame can also be used for cutting tiles. Marks on the frame make it easy to cut tiles the same size without re-measuring.

4. Finished tiles ready for controlled drying. Because the design was made before the tiles were cut out, the edges of the tiles remain intact.
2. How to Make a Platter Using a Slump Mold

Traditionally, platters have been made by laying a large slab of clay into a large, shallow mold and trimming the edge in the same way the excess dough is trimmed from the crust of a pie. This demonstration presents an alternative approach—the slab is trimmed and its edge finished before it’s placed in the mold, and all of the decorating is done while the slab lays flat on the table.

TOOLS & MATERIALS

Paint edge trimmer, construction paper, shallow plastic platter, water-filled spray bottle, small knife, needle tool, dry cleaning bag (2), paint stir sticks (4), ballast bag, popsicle stick with shaped end

![Image 1](image1.png)

Roll out a slab of clay on construction paper just under ½ inch thick. Spray water on the surface and smooth it.

![Image 2](image2.png)

Place the platter form upside down on the slab and use a needle tool to cut out the shape from the slab.

![Image 3](image3.png)

Lightly drape a dry cleaning bag over the trimmed slab and carefully place the right-side up platter on the plastic, guided by your fingers.

![Image 4](image4.png)

Once you have the correct alignment, press the platter evenly on all sides to imprint the tray’s oval foot in the clay.

![Image 5](image5.png)

The area between the foot imprint and the edge of the slab defines the area to decorate. Lay plastic on the clay before pressing stamps.

![Image 6](image6.png)

Smooth the rim with your fingers then with tapered tip of a Popsicle stick. Lay a piece of plastic in the platter form.

![Image 7](image7.png)

Lift the decorated slab with a pair of paint stirring sticks in each hand and transfer it to the plastic-covered tray and carefully align it.

![Image 8](image8.png)

Cover the slab with another dry cleaning bag and use a ballast bag to form the slab to the platter mold.

![Image 9](image9.png)

With plastic in place, smooth rim with thumb and forefinger using a little downward pressure to seat the edge in the mold. Dry slowly.

![Image 10](image10.png)

Coat kiln shelf with a little alumina hydrate or silica to reduce the risk of cracking. Leave 2 inches of space above to assure even heating.
3. How to Make a Bowl by Making and Using Templates

A template is useful when you want to make several items the same size and shape. The template for a dish looks something like a donut with a bite taken out of it, and the template for a pitcher is essentially the portion represented by the bite, albeit on a larger scale.

TOOLS & MATERIALS FOR THE DISH:

- Small 1x4 block of wood with one end cut at a 45° angle
- Pencil
- Needle tool
- Fettling knife
- Rolling pin
- Serrated rib
- Small sponge
- Marking pen
- Drafting compass
- X-Acto knife and #11 blades
- 12x12-in. matte board or equivalent.

To see what form a flat template makes, cut a series of circles and experiment. Here the templates on the left and right produce different shaped truncated cones.

1. Draw an 11-in. circle on cardboard with a 5-in. circle in the center of it. Draw a right angle from the center to the edge and cut out the pieces with an X-Acto knife.
2. Lay the template on a slab of clay and trace around it. Remove the template and decorate the slab with stamps or drawn lines. Cut the arc.
3. Bevel the ends at 45° as well as the inside radius. When beveling the ends of the arc, bevel in opposite directions so the ends overlap.
4. Score the edges, apply slip and bring the ends together to draw the shape up to form the wall of the bowl. Smooth the seam.
5. Cut a disk of clay slightly larger than the bottom opening of the dish to make a base. Decorate it and attach it with slip.
6. Finish the edge with a rounded stick and place decorative elements over the seam if you wish. Clean up any rough spots with a small brush and water.

Finished slab-built bowls created with a template.
Rule the Roll!

With North Star’s 30” Slab Boss!

- Rolls forward or reverse & makes tapered & textured slabs
- Makes slabs 30” wide by any length & super-thin to 2 1/2”
- Easy to use thickness gauge & locking mechanism for repeated settings
- Maintenance Free - No chains, cables, shims or inferior parts
- Rust-Free, powder-coated finish
- Optional bottom shelf & table extensions
- Made in USA and has a Lifetime Warranty

The Ultimate Extruder Package!

- 4” Square Stainless Steel Barrel for Rust-Free Extrusions
- Makes 6” Extrusions with Optional Expansion Box (Sold separately)
- Lifetime Warranty
- Made in USA

To Purchase Visit Your Local Dealer
1-800-231-7896
NORTH STAR EQUIPMENT, INC.
1341 W. First St. Cheney, WA 99004
1-509-235-9200 FAX: 1-509-235-9203 or 1-800-447-3293
www.northstarequipment.com

Forever Bat

- Universal Bat System
 “Saves Time, Space & Money”
 Comes with (9) inserts
 Fits most 12” wheelheads

- Blue Plastic Bats
 “The Perfect Throwing Bat” Matte Finish
 13” or 15” x 1/4” Drilled to fit most wheelheads

To Purchase Visit Your Local Dealer
1-800-231-7896

www.northstarequipment.com